Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564478

RESUMO

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Ferro , Amido , Nanopartículas Magnéticas de Óxido de Ferro
2.
Artigo em Inglês | MEDLINE | ID: mdl-37860628

RESUMO

The dynamic nature of perfusion in living tissues, such as solid tumors during thermal therapy, produces challenging spatiotemporal thermal boundary conditions. Changes in perfusion can manifest as changes in convective heat transfer that influence temperature changes during cyclic heating. Herein, we propose a method to actively monitor changes in local convection (perfusion) in vivo by using a transient thermal pulsing analysis. Syngeneic 4T1 tumor cells were injected subcutaneously into BALB/c mice and followed by caliper measurements. When tumor volumes measured 150-400 mm3, mice were randomly divided into one of two groups to receive intratumor injections of one of two iron oxide nanoparticle formulations for pulsed heating with an alternating magnetic field (AMF). The nanoparticles differed in both heating characteristics and coating. Intratumor temperature near the injection site as well as rectal temperature were measured with an optic fiber temperature probe. Following heating, mice were euthanized and tumors harvested and prepared for histological evaluation of nanoparticle distribution. To ascertain the heat transfer coefficient from heating and cooling pulses, we fit a lumped capacitance, Box-Lucas model to the time-temperature data assuming fixed tumor geometry and constant experimental conditions. For the first particle set, the injected nanoparticles dispersed evenly throughout the tumor with minimal aggregation, and with minimal change in convection. On the other hand, heating with the second particle generated a measurable decline in convective performance and histology analysis showed substantial aggregation near the injection site. We consider it likely that though the second nanoparticle type produced less heating per unit mass, its tendency to aggregate led to more intense local heating and tissue damage. Further analysis and experimentation is warranted to establish quantitative correlations between measured temperature changes, perfusion, and tissue damage responses. Implementing this type of analysis may stimulate development of robust and adaptive temperature controllers for medical device applications.

3.
Int J Hyperthermia ; 40(1): 2272067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37875265

RESUMO

PURPOSE: Magnetic particle hyperthermia is an approved cancer treatment that harnesses thermal energy generated by magnetic nanoparticles when they are exposed to an alternating magnetic field (AMF). Thermal stress is either directly cytotoxic or increases the susceptibility of cancer cells to standard therapies, such as radiation. As with other thermal therapies, the challenge with nanoparticle hyperthermia is controlling energy delivery. Here, we describe the design and implementation of a prototype pre-clinical device, called HYPER, that achieves spatially confined nanoparticle heating within a user-selected volume and location. DESIGN: Spatial control of nanoparticle heating was achieved by placing an AMF generating coil (340 kHz, 0-15 mT), between two opposing permanent magnets. The relative positions between the magnets determined the magnetic field gradient (0.7 T/m-2.3 T/m), which in turn governed the volume of the field free region (FFR) between them (0.8-35 cm3). Both the gradient value and position of the FFR within the AMF ([-14, 14]x, [-18, 18]y, [-30, 30]z) mm are values selected by the user via the graphical user interface (GUI). The software then controls linear actuators that move the static magnets to adjust the position of the FFR in 3D space based on user input. Within the FFR, the nanoparticles generate hysteresis heating; however, outside the FFR where the static field is non-negligible, the nanoparticles are unable to generate hysteresis loss power. VERIFICATION: We verified the performance of the HYPER to design specifications by independently heating two nanoparticle-rich areas of a phantom placed within the volume occupied by the AMF heating coil.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Temperatura Alta , Campos Magnéticos
4.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760524

RESUMO

PURPOSE: Develop a treatment planning framework for neurosurgeons treating high-grade gliomas with LITT to minimize the learning curve and improve tumor thermal dose coverage. METHODS: Deidentified patient images were segmented using the image segmentation software Materialize MIMICS©. Segmented images were imported into the commercial finite element analysis (FEA) software COMSOL Multiphysics© to perform bioheat transfer simulations. The laser probe was modeled as a cylindrical object with radius 0.7 mm and length 100 mm, with a constant beam diameter. A modeled laser probe was placed in the tumor in accordance with patient specific patient magnetic resonance temperature imaging (MRTi) data. The laser energy was modeled as a deposited beam heat source in the FEA software. Penne's bioheat equation was used to model heat transfer in brain tissue. The cerebrospinal fluid (CSF) was modeled as a solid with convectively enhanced conductivity to capture heat sink effects. In this study, thermal damage-dependent blood perfusion was assessed. Pulsed laser heating was modeled based on patient treatment logs. The stationary heat source and pullback heat source techniques were modeled to compare the calculated tissue damage. The developed bioheat transfer model was compared to MRTi data obtained from a laser log during LITT procedures. The application builder module in COMSOL Multiphysics© was utilized to create a Graphical User Interface (GUI) for the treatment planning framework. RESULTS: Simulations predicted increased thermal damage (10-15%) in the tumor for the pullback heat source approach compared with the stationary heat source. The model-predicted temperature profiles followed trends similar to those of the MRTi data. Simulations predicted partial tissue ablation in tumors proximal to the CSF ventricle. CONCLUSION: A mobile platform-based GUI for bioheat transfer simulation was developed to aid neurosurgeons in conveniently varying the simulation parameters according to a patient-specific treatment plan. The convective effects of the CSF should be modeled with heat sink effects for accurate LITT treatment planning.

5.
Nanotheranostics ; 7(4): 393-411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426881

RESUMO

The biological influence of physicochemical parameters of "targeted" nanoparticles on their delivery to cancer tumors remains poorly understood. A comparative analysis of nanoparticle distributions in tumors following systemic delivery across several models can provide valuable insights. Methods: Bionized nanoferrite nanoparticles (iron oxide core coated with starch), either conjugated with a targeted anti-HER2 antibody (BH), or unconjugated (BP), were intravenously injected into athymic nude or NOD-scid gamma (NSG) female mice bearing one of five human breast cancer tumor xenografts growing in a mammary fat pad. Tumors were harvested 24 hours after nanoparticle injection, fixed, mounted, and stained. We performed detailed histopathology analysis by comparing spatial distributions of nanoparticles (Prussian blue) with various stromal cells (CD31, SMA, F4/80, CD11c, etc.) and the target antigen-expressing (HER2) tumor cells. Results: Only BH nanoparticles were retained in tumors and generally concentrated in the tumor periphery, with nanoparticle content diminishing towards the tumor interior. Nanoparticle distribution correlated strongly with specific stromal cells within each tumor type, which varied among tumor types and between mouse strains. Weak or no correlation between nanoparticle distribution and HER2 positive cells, or CD31 cells was observed. Conclusion: Antibody-labeled nanoparticles were retained across all tumors, irrespective of presence of the "target" antigen. Though presence of antibody on nanoparticles correlated with retention, non-cancerous host stromal cells were responsible for their retention in the tumor microenvironment. This study highlights gaps in our understanding of the complex biological interplay between disease and host immune biology, and the need to account for the influence of underlying aberrant tumor biology as factors determining nanoparticle fate in vivo.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Humanos , Feminino , Camundongos , Animais , Xenoenxertos , Nanopartículas de Magnetita/química , Camundongos Endogâmicos NOD , Análise Espacial , Microambiente Tumoral
6.
Nanomaterials (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242072

RESUMO

In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.

7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108659

RESUMO

Liver transplantation is the only treatment for hepatic insufficiency as a result of acute and chronic liver injuries/pathologies that fail to recover. Unfortunately, there remains an enormous and growing gap between organ supply and demand. Although recipients on the liver transplantation waitlist have significantly higher mortality, livers are often not allocated because they are (i) classified as extended criteria or marginal livers and (ii) subjected to longer cold preservation time (>6 h) with a direct correlation of poor outcomes with longer cold ischemia. Downregulating the recipient's innate immune response to successfully tolerate a graft having longer cold ischemia times or ischemia-reperfusion injury through induction of immune tolerance in the graft and the host would significantly improve organ utilization and post-transplant outcomes. Broadly, technologies proposed for development aim to extend the life of the transplanted liver through post-transplant or recipient conditioning. In this review, we focus on the potential benefits of nanotechnology to provide unique pre-transplant grafting and recipient conditioning of extended criteria donor livers using immune tolerance induction and hyperthermic pre-conditioning.


Assuntos
Falência Hepática , Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Fígado , Doadores de Tecidos , Traumatismo por Reperfusão/terapia , Preservação de Órgãos
8.
Artigo em Inglês | MEDLINE | ID: mdl-36945684

RESUMO

Introduction: Magnetic hyperthermia therapy (MHT) is a minimally invasive adjuvant therapy capable of damaging tumors using magnetic nanoparticles exposed radiofrequency alternating magnetic fields. One of the challenges of MHT is thermal dose control and excessive heating in superficial tissues from off target eddy current heating. Methods: We report the development of a control system to maintain target temperature during MHT with an automatic safety shutoff feature in adherence to FDA Design Control Guidance. A proportional-integral-derivative (PID) control algorithm was designed and implemented in NI LabVIEW®. A standard reference material copper wire was used as the heat source to verify the controller performance in gel phantom experiments. Coupled electromagnetic thermal finite element analysis simulations were used to identify the initial controller gains. Results: Results showed that the PID controller successfully achieved the target temperature control despite significant perturbations. Discussion and Conclusion: Feasibility of PID control algorithm to improve efficacy and safety of MHT was demonstrated.

9.
Neurosurg Clin N Am ; 34(2): 269-283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36906333

RESUMO

Magnetic hyperthermia therapy (MHT) is a highly localized form of hyperthermia therapy (HT) that has been effective in treating various forms of cancer. Many clinical and preclinical studies have applied MHT to treat aggressive forms of brain cancer and assessed its role as a potential adjuvant to current therapies. Initial results show that MHT has a strong antitumor effect in animal studies and a positive association with overall survival in human glioma patients. Although MHT is a promising therapy with the potential to be incorporated into the future treatment of brain cancer, significant advancement of current MHT technology is required.


Assuntos
Neoplasias Encefálicas , Glioma , Hipertermia Induzida , Animais , Humanos , Hipertermia Induzida/métodos , Glioma/terapia , Neoplasias Encefálicas/terapia , Fenômenos Magnéticos
10.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672278

RESUMO

We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min.

11.
J Appl Phys ; 133(4): 044302, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36718210

RESUMO

Heating magnetic nanoparticles (MNPs) with alternating magnetic fields (AMFs) have applications in biomedical research and cancer therapy. Accurate measurement of the heating efficiency or specific loss power (SLP) generated by the MNPs is essential to assess response(s) in biological systems. Efforts to develop standardized equipment and to harmonize results obtained from various MNP samples and AMF systems have met with little success. Without a standardized magnetic nanoparticle or calorimeter device, objective comparisons of estimated thermal output among laboratories remain a challenge. In addition, the most widely used adiabatic initial slope model fails to account for thermal losses, which are unavoidable. We propose a non-adiabatic method to analyze MNP heating efficiency derived from the Box-Lucas equation, wherein the sample is subjected to several short duration heating pulses. SLP is then estimated from an arithmetic average of the Box-Lucas fitted coefficients obtained from each pulse. Heating experiments were conducted with two identical samples that were placed within vessels having different thermal insulation using the same AMF parameters. Though the samples generated different temperature curves, the pulsed Box-Lucas method produced nearly equivalent SLP estimates. Further, the pulsed test enabled analysis of the heat transfer coefficient providing quantitative measures of sample heat loss throughout the test, with robust statistical confidence. We anticipate this new methodology will aid efforts to standardize measurements of MNP heating efficiency, enabling direct comparison among varied systems.

12.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555306

RESUMO

A promise of cancer nanomedicine is the "targeted" delivery of therapeutic agents to tumors by the rational design of nanostructured materials. During the past several decades, a realization that in vitro and in vivo preclinical data are unreliable predictors of successful clinical translation has motivated a reexamination of this approach. Mathematical models of drug pharmacokinetics (PK) and biodistribution (BD) are essential tools for small-molecule drugs development. A key assumption underlying these models is that drug-target binding kinetics dominate blood clearance, hence recognition by host innate immune cells is not explicitly included. Nanoparticles circulating in the blood are conspicuous to phagocytes, and inevitable interactions typically trigger active biological responses to sequester and remove them from circulation. Our recent findings suggest that, instead of referring to nanoparticles as designed for active or passive "tumor targeting", we ought rather to refer to immune cells residing in the tumor microenvironment (TME) as active or passive actors in an essentially "cell-mediated tumor retention" process that competes with active removal by other phagocytes. Indeed, following intravenous injection, nanoparticles induce changes in the immune compartment of the TME because of nanoparticle uptake, irrespective of the nature of tumor targeting moieties. In this study, we propose a 6-compartment PK model as an initial mathematical framework for modeling this tumor-associated immune cell-mediated retention. Published in vivo PK and BD results obtained with bionized nanoferrite® (BNF®) nanoparticles were combined with results from in vitro internalization experiments with murine macrophages to guide simulations. As a preliminary approximation, we assumed that tumor-associated macrophages (TAMs) are solely responsible for active retention in the TME. We model the TAM approximation by relating in vitro macrophage uptake to an effective macrophage avidity term for the BNF® nanoparticles under consideration.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Camundongos , Animais , Distribuição Tecidual , Macrófagos/metabolismo , Neoplasias/terapia , Nanopartículas/química , Microambiente Tumoral
13.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014633

RESUMO

For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success following treatment remains inconsistent and below expectations, so new approaches are needed. Imaging-guided thermal therapy interventions have emerged as attractive procedures that offer individualized tumor targeting with the potential for the selective targeting of tumor nodules without impairing liver function. Furthermore, imaging-guided thermal therapy with added standard-of-care chemotherapies targeted to the liver tumor can directly reduce the overall dose and limit toxicities commonly seen with systemic administration. Effectiveness of non-ablative thermal therapy (hyperthermia) depends on the achieved thermal dose, defined as time-at-temperature, and leads to molecular dysfunction, cellular disruption, and eventual tissue destruction with vascular collapse. Hyperthermia therapy requires controlled heat transfer to the target either by in situ generation of the energy or its on-target conversion from an external radiative source. Magnetic hyperthermia (MHT) is a nanotechnology-based thermal therapy that exploits energy dissipation (heat) from the forced magnetic hysteresis of a magnetic colloid. MHT with magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs) requires the targeted deposition of MNPs into the tumor, followed by exposure of the region to an AMF. Emerging modalities such as magnetic particle imaging (MPI) offer additional prospects to develop fully integrated (theranostic) systems that are capable of providing diagnostic imaging, treatment planning, therapy execution, and post-treatment follow-up on a single platform. In this review, we focus on recent advances in image-guided MHT applications specific to liver cancer.

14.
Antimicrob Agents Chemother ; 66(4): e0239921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35293784

RESUMO

Cryptococcosis is a devastating fungal disease associated with high morbidity and mortality even when treated with antifungal drugs. Bionized nanoferrite (BNF) nanoparticles are powerful immunomodulators, but their efficacy for infectious diseases has not been investigated. Administration of BNF nanoparticles to mice with experimental cryptococcal pneumonia altered the outcome of infection in a dose response manner as measured by CFU and survival. The protective effects were higher at lower doses, with reductions in IL-2, IL-4, and TNF-α, consistent with immune modulation whereby reductions in inflammation translate into reduced host damage, clearance of infection, and longer survival.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
15.
Artigo em Inglês | MEDLINE | ID: mdl-35238181

RESUMO

Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat-based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle-imaging technology that provides real-time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof-of-principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Diagnóstico por Imagem/métodos , Humanos , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
16.
Int J Hyperthermia ; 38(1): 611-622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33853493

RESUMO

PURPOSE: Alternating magnetic field (AMF) tissue interaction models are generally not validated. Our aim was to develop and validate a coupled electromagnetic and thermal model for estimating temperatures in large organs during magnetic nanoparticle hyperthermia (MNH). MATERIALS AND METHODS: Coupled finite element electromagnetic and thermal model validation was performed by comparing the results to experimental data obtained from temperatures measured in homogeneous agar gel phantoms exposed to an AMF at fixed frequency (155 ± 10 kHz). The validated model was applied to a three-dimensional (3D) rabbit liver built from computed tomography (CT) images to investigate the contribution of nanoparticle heating and nonspecific eddy current heating as a function of AMF amplitude. RESULTS: Computed temperatures from the model were in excellent agreement with temperatures calculated using the analytical method (error < 1%) and temperatures measured in phantoms (maximum absolute error <2% at each probe location). The 3D rabbit liver model for a fixed concentration of 5 mg Fe/cm3 of tumor revealed a maximum temperature ∼44 °C in tumor and ∼40 °C in liver at AMF amplitude of ∼12 kA/m (peak). CONCLUSION: A validated coupled electromagnetic and thermal model was developed to estimate temperatures due to eddy current heating in homogeneous tissue phantoms. The validated model was successfully used to analyze temperature distribution in complex rabbit liver tumor geometry during MNH. In future, model validation should be extended to heterogeneous tissue phantoms, and include heat sink effects from major blood vessels.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Fenômenos Eletromagnéticos , Hipertermia , Coelhos , Temperatura
17.
Adv Drug Deliv Rev ; 163-164: 65-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603814

RESUMO

Significant research and preclinical investment in cancer nanomedicine has produced several products, which have improved cancer care. Nevertheless, there exists a perception that cancer nanomedicine 'has not lived up to its promise' because the number of approved products and their clinical performance are modest. Many of these analyses do not consider the long clinical history and many clinical products developed from iron oxide nanoparticles. Iron oxide nanoparticles have enjoyed clinical use for about nine decades demonstrating safety, and considerable clinical utility and versatility. FDA-approved applications of iron oxide nanoparticles include cancer diagnosis, cancer hyperthermia therapy, and iron deficiency anemia. For cancer nanomedicine, this wealth of clinical experience is invaluable to provide key lessons and highlight pitfalls in the pursuit of nanotechnology-based cancer therapeutics. We review the clinical experience with systemic liposomal drug delivery and parenteral therapy of iron deficiency anemia (IDA) with iron oxide nanoparticles. We note that the clinical success of injectable iron exploits the inherent interaction between nanoparticles and the (innate) immune system, which designers of liposomal drug delivery seek to avoid. Magnetic fluid hyperthermia, a cancer therapy that harnesses magnetic hysteresis heating is approved for treating humans only with iron oxide nanoparticles. Despite its successful demonstration to enhance overall survival in clinical trials, this nanotechnology-based thermal medicine struggles to establish a clinical presence. We review the physical and biological attributes of this approach, and suggest reasons for barriers to its acceptance. Finally, despite the extensive clinical experience with iron oxide nanoparticles new and exciting research points to surprising immune-modulating potential. Recent data demonstrate the interactions between immune cells and iron oxide nanoparticles can induce anti-tumor immune responses. These present new and exciting opportunities to explore additional applications with this venerable technology. Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine. They also illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomedicines into clinical cancer care.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Neoplasias/tratamento farmacológico , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Imunoterapia/métodos
18.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579419

RESUMO

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Assuntos
Hipertermia Induzida , Neoplasias , Calefação , Temperatura Alta , Humanos , Neoplasias/terapia , Tecnologia
20.
Sci Adv ; 6(13): eaay1601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32232146

RESUMO

The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand ("active targeting") is superior to its unlabeled counterpart ("passive targeting"). Using models of breast cancer in three immune variants of mice, we demonstrate that intratumor retention of antibody-labeled nanoparticles was determined by tumor-associated dendritic cells, neutrophils, monocytes, and macrophages and not by antibody-antigen interactions. Systemic exposure to either nanoparticle type induced an immune response leading to CD8+ T cell infiltration and tumor growth delay that was independent of antibody therapeutic activity. These results suggest that antitumor immune responses can be induced by systemic exposure to nanoparticles without requiring a therapeutic payload. We conclude that immune status of the host and microenvironment of solid tumors are critical variables for studies in cancer nanomedicine and that nanoparticle technology may harbor potential for cancer immunotherapy.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Imunoconjugados , Imunomodulação , Linfócitos do Interstício Tumoral/imunologia , Nanopartículas , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunoconjugados/farmacologia , Imunomodulação/efeitos dos fármacos , Ferro/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Ligação Proteica , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Carga Tumoral , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...